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Preface 
For most of history, human capability advanced through the accumulation of 
knowledge and the refinement of tools. We learned to understand the world 
through observation. We developed technologies that amplified human labor, 
extended human senses, and accelerated human communication. But the 
fundamental constraints remained: biology limited what our bodies could do, 
intelligence required human cognition to direct every decision, and energy 
systems operated within the bounds of what previous generations had built. 

Between 2020 and 2025, something changed. Decades of fundamental research 
across multiple scientific domains—molecular biology, machine learning, 
materials science, renewable energy engineering—reached maturity 
simultaneously. Manufacturing processes that had been confined to laboratories 
scaled to commercial production. Technologies that had been limited to controlled 
demonstrations achieved sufficient reliability for real-world deployment. And 
capabilities that had seemed perpetually five to ten years away crossed 
thresholds into operational reality. 

The result is a transformation that extends across the biological, the cognitive, 
and the physical infrastructure of civilization itself. 

In medicine, we moved from managing disease to engineering cellular function. 
In artificial intelligence, machines transitioned from answering questions to 
autonomously executing complex tasks. In energy, renewable sources surpassed 
fossil fuels not through policy mandates but through economic superiority. Each 
shift represents decades of incremental progress suddenly converging into 
deployed capability. 

This book documents convergence through ten detailed narratives spanning 
2020 to 2025. The structure reflects three domains undergoing simultaneous 
transformation: 

Part I: The Rewrite of Biology follows medicine's transition from reactive 
management to molecular engineering—preventing HIV transmission entirely 
rather than suppressing it with daily medications, generating replacement organs 
from stem cells rather than waiting for donors, bypassing severed neural 
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pathways with brain-computer interfaces rather than accepting permanent 
paralysis. 

Part II: The Intelligence Shift documents artificial intelligence crossing from 
controlled environments into autonomous operation—vehicles navigating city 
traffic without human oversight, AI systems planning and executing multi-step 
tasks independently, and models compressed from data centers to smartphones 
while maintaining capability. 

Part III: The Planetary Substrate traces transformations in energy and 
observation—renewable electricity surpassing coal globally, aviation beginning 
decarbonization through sustainable fuels, and astronomy shifting from taking 
occasional snapshots to filming the universe continuously. 

These stories share common characteristics. Each represents an inflection point 
of learning curves that spanned decades. Each required manufacturing at scales 
that seemed impossible until accomplished. Each crossed thresholds where 
capabilities once limited to demonstrations became commercially deployed or 
scientifically operational. And each demonstrates that constraints once 
considered fundamental—biological limits, cognitive boundaries, physical 
infrastructure—can be renegotiated when underlying technologies mature and 
supporting systems are built. 

The transformations documented here emerged from thousands of researchers 
making incremental advances, engineers solving manufacturing challenges, 
entrepreneurs building companies around maturing technologies, and 
policymakers creating frameworks that enabled deployment.  

The ten chapters that follow document the technologies I identified as most 
fundamental, most transformative, and most clearly at inflection points between 
2020 and 2025. These are not predictions about what might happen but records 
of what has already occurred—the capabilities now deployed, the thresholds 
already crossed, the systems currently operational. Understanding what 
happened in these five years is essential to understanding what becomes 
possible in the decade ahead. 
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Enjoy reading, 

Noor  
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Part II: The Intelligence Shift 
Noor Shaker 

AI & Automation 
For most of computing history, software has been an exercise in explicit 
instruction. Programmers identified problems, decomposed them into logical 
steps, and wrote code that executed those steps precisely. When programs 
encountered situations their creators hadn't anticipated, they failed. When tasks 
required understanding context, recognizing patterns, or adapting to variation, 
they required human intervention at every decision point.  

Between 2020 and 2025, artificial intelligence crossed multiple thresholds 
simultaneously. Systems that had been limited to answering questions began 
planning and executing multi-step tasks autonomously. Models that required data 
center infrastructure were compressed to run on smartphones without sacrificing 
capability. Search engines that returned lists of links began generating direct 
answers and executing complete solutions. And machines that had been helpless 
in the physical world—unable to navigate unpredictable environments or 
manipulate irregular objects—achieved sufficient competence to operate 
commercially in urban traffic and industrial facilities. 

The two chapters that follow document this transformation across the digital and 
physical domains. Each represents a distinct technical challenge. Each emerged 
from decades of foundational research in machine learning, computer vision, and 
robotic control. But together, they reveal a unified shift in what machines can 
accomplish without human guidance. 

The two chapters of Part II document this transformation through specific 
technologies and deployment milestones. Chapter 6 follows the path from 
controlled laboratory demonstrations to commercial autonomous vehicles 
transporting hundreds of thousands of passengers daily, and from rigid industrial 
robots to fast-learning systems that adapt to new tasks through observation and 
simulated practice. Chapter 7 traces the architecture shift from conversational AI 
to agentic systems, the compression of models from data centers to devices, and 
the death of link-based search in favor of generated answers and executed 
solutions.  
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Chapter 6: The Physical Mind 
Robotaxis and Fast-Learning Robots 

Noor Shaker 

The 100,000th Ride 

On March 15, 2025, Jennifer Valdez settled into the driver seat of a white Jaguar 
I-PACE as rain drummed against the windshield. She was not really driving. The 
steering wheel turned on its own, guided by eight cameras, five lidars, and six 
radars processing 1.4 million data points per second. This was her Waymo 
robotaxi—and this particular ride, departing from San Francisco International 
Airport at 6:47 PM, was not her first trip with the service. 

Valdez, a pharmaceutical sales representative, had been skeptical when Waymo 
opened its San Francisco service to the public in 2024. She'd spent years driving 
herself to client meetings, convinced that no machine could navigate the city's 
chaotic intersections, aggressive drivers, and impossible parking. Her first 
robotaxi ride was curiosity mixed with terror. 

By the end of 2025, Waymo was providing 450,000 autonomous rides weekly 
across San Francisco, Los Angeles, Phoenix, and Austin—roughly 64,000 rides 
per day, or one every 1.4 seconds. The company had logged over 50 million fully 
autonomous miles. The accident rate, measured per million miles, was 85% 
lower than human drivers. 

But the real story wasn't just about removing human drivers from cars. It was 
about machines finally learning to navigate the physical world with something 
approaching human intuition—and learning to do it faster and safer than anyone 
thought possible. 

October 9, 2010: The DARPA Challenge 

To understand how Jennifer Valdez came to trust her life to a driverless car, we 
need to rewind to a moment when the entire concept seemed like science fiction 
hovering just beyond reach. 

In November 2007, six vehicles successfully completed the DARPA Urban 
Challenge, navigating ~60 miles of simulated city traffic near Victorville, 
California. Carnegie Mellon’s Tartan Racing team won with 'Boss' (a modified 
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Chevy Tahoe), while Sebastian Thrun’s Stanford team took second with 'Junior' 
(a Volkswagen Passat). 

The victory was impressive—but also revealed the technology's profound 
limitations. Boss required a trunk full of computers, sensors, and custom 
electronics drawing significant power (~1–2 kW total system load). The course 
had been carefully controlled, with speeds limited to 30 mph and all other 
vehicles operated by professional drivers following strict DARPA protocols. There 
were no pedestrians, no bicycles, no unexpected obstacles. The weather was 
clear and dry. This wasn't real-world driving—it was a highly constrained 
demonstration.  

Thrun, a German-born computer scientist who had joined Stanford's faculty in 
2003, understood both the achievement and the chasm that remained. Three 
years after the DARPA Challenge, in 2010, Thrun joined Google as a founding 
director of Google X, the company's secretive research division focused on 
"moonshot" projects. His first major initiative was Project Chauffeur—what would 
eventually become Waymo. 

The project started with a modified Toyota Prius equipped with a spinning 
Velodyne lidar unit on the roof—the distinctive cylinder that would become the 
visual signature of early self-driving cars. The hardware was crude by today's 
standards: 64 laser beams rotating at 10 Hz, creating a 360-degree point cloud of 
the vehicle's surroundings. Each lidar unit cost approximately $75,000. 

But the real challenge wasn't hardware. It was software—specifically, teaching a 
machine to make sense of the chaos of real-world driving. 

The Perception Problem 

Driving seems simple because human brains make it look effortless. You glance 
at a busy intersection and instantly parse a staggering amount of information: the 
traffic light is yellow, the pedestrian at the crosswalk is looking at their phone and 
probably won't cross, the delivery truck on the right is partially blocking the bike 
lane, the cyclist behind the truck is about to swerve left, the sedan three cars 
ahead just hit its brakes. 

Your brain does this through pattern recognition honed over millions of years of 
evolution and refined through hours of driving experience. You don't consciously 
process "object at 15 meters, trajectory intersecting path, classification: probable 
hazard." You just see and react. 

For a machine, every element of this scene is a computational nightmare. 
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Early self-driving systems used rule-based approaches. Engineers would write 
explicit code: "If object appears in path and closing speed exceeds X, apply 
brakes with force Y." These systems worked in controlled environments but failed 
catastrophically when encountering situations the programmers hadn't 
anticipated. 

The breakthrough came from a different approach entirely—not programming 
rules, but learning from examples. 

The Neural Network Revolution 

The conceptual foundation for modern AI traces back to 1943, when Warren 
McCulloch and Walter Pitts published "A Logical Calculus of the Ideas Immanant 
in Nervous Activity," proposing that networks of simple computational units could 
perform complex logical operations—essentially, that artificial neurons could 
think. 

But the real revolution began much later, in 2012, when Geoffrey Hinton's 
research group at the University of Toronto stunned the computer vision 
community at the ImageNet Large Scale Visual Recognition Challenge. 

ImageNet was a dataset containing 1.2 million labeled images across 1,000 
categories—everything from golden retrievers to garbage trucks to broccoli. The 
competition challenged teams to build systems that could correctly classify these 
images. Prior to 2012, the best systems achieved error rates around 
25%—meaning they misidentified one in four images. 

Hinton's team, using a deep convolutional neural network called AlexNet, 
achieved an error rate of 15.3%. It wasn't an incremental improvement—it was a 
different category of performance. Within two years, deep learning systems 
would surpass human-level accuracy on ImageNet classification. 

The key insight was simple but profound: instead of programming explicit rules 
for recognizing objects, you could create networks of simulated neurons, show 
them millions of examples, and let them learn the patterns themselves. The 
network would adjust its internal parameters—millions of numerical 
weights—until it could reliably distinguish a pedestrian from a mailbox, a cyclist 
from a parked motorcycle, a traffic cone from a construction barrel. 

This approach, called deep learning, transformed computer vision from brittle 
rule-based systems into flexible pattern recognizers. By 2015, deep neural 
networks were outperforming traditional computer vision algorithms across 
virtually every benchmark. 
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For self-driving cars, this was transformative. Early systems struggled to identify 
pedestrians in unusual clothing or poses. Neural networks trained on millions of 
images could recognize humans in thousands of different 
configurations—running, standing, crouching, pushing strollers, wearing 
backpacks, holding umbrellas. But perception was only half the problem. 

The Prediction and Planning Challenge 

Seeing the world is one thing. Deciding what to do about it is another. 

Consider a four-way intersection where you have the right of way, but another car 
is approaching from the left at a speed that suggests the driver might not stop. 
Do you proceed? Slow down? Stop completely? The decision requires predicting 
what other agents will do—modeling their intentions, their awareness, their likely 
actions. 

Human drivers make these predictions unconsciously, drawing on intuition built 
from experience. We notice the subtle deceleration that suggests someone is 
about to stop. We recognize the distracted driver who's looking at their phone. 
We anticipate that the car with its right turn signal might cut us off. 

For autonomous vehicles, this requires what researchers call "behavior 
prediction"—modeling the future trajectories of every agent in the scene. Modern 
systems don't just track objects; they predict what each object will do over the 
next several seconds, generating probability distributions for different possible 
futures. 

Waymo's sixth-generation autonomous driving system, deployed starting in 2024 
and refined through 2025, processes sensor data from 13 cameras, 4 lidars, and 
6 radars through integrated end-to-end neural networks. The perception module 
creates detailed 3D semantic maps with pixel-level scene classification for 
objects like vehicles and pedestrians out to over 300 meters, while the prediction 
system forecasts multi-modal trajectories for surrounding agents. The planning 
layer then evaluates thousands of candidate paths per second, selecting the one 
that optimizes for safety, passenger comfort (minimizing jerk and acceleration), 
and route efficiency under real-world uncertainty. 

The computational requirements are staggering. Waymo's current vehicles 
contain custom-designed AI accelerators—specialized processors optimized for 
the matrix multiplications that dominate neural network calculations. These chips 
process approximately 300 trillion operations per second. 

The Data Moat 
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But hardware and algorithms alone don't explain Waymo's dominance. The real 
competitive advantage is data—specifically, the scale and diversity of real-world 
driving experience. 

By March 2025, Waymo had accumulated over 50 million fully autonomous miles. 
This wasn't 50 million miles of human-driven data collection. These were miles 
driven by vehicles making every decision autonomously, with human safety 
drivers present only as backup. 

The Geographic Expansion 

In early autonomous vehicle development, companies chose Phoenix, Arizona 
for testing because the conditions were ideal: clear skies, wide streets, grid 
layouts, minimal pedestrians. The environment was forgiving. 

By 2025, Waymo had moved far beyond these training wheels. The San 
Francisco expansion, launched in 2024, was the acid test. San Francisco has 
some of the most challenging urban driving conditions in North America: steep 
hills, dense fog, narrow Victorian streets, aggressive human drivers, high 
pedestrian and cyclist traffic, complex multi-way intersections, double-parked 
delivery vehicles, and frequent street closures for construction or events. 

In San Francisco, Waymo's vehicles have logged millions of driverless miles 
through fog, protests, and complex urban conditions, with reported collision rates 
several times lower than human drivers according to California DMV data. 

The Economic Tipping Point 

By mid-2025, the economics of robotaxis had crossed a critical threshold. 
Waymo's cost per mile had dropped to approximately $1.80, down from over $4 
per mile in 2020. This included vehicle depreciation, maintenance, insurance, 
cleaning, charging/fueling, and the remote fleet management staff who monitored 
vehicles and provided assistance when needed. 

For context, the fully loaded cost of personal car ownership averages ~$0.65 per 
mile, while Uber/Lyft rides typically cost $2–$3 per mile after driver 
compensation. The implications were staggering. Americans drive approximately 
3.2 trillion miles annually. If robotaxis could capture even 20% of urban miles—a 
conservative estimate for trips that don't require vehicle ownership—that 
represented a $200 billion annual market. 

A Parallel Revolution: Robots That Learn by Watching 
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While Waymo taught machines to navigate streets, another group of researchers 
was teaching robots to navigate warehouses, kitchens, and factory floors—and 
they were learning exponentially faster. 

Traditional industrial robots are magnificent at repetition but helpless at 
adaptation. A robot arm in an automobile factory performs the same welding 
operation millions of times with micron precision. But if you ask it to pick up a 
slightly different part, or respond to unexpected variation, it fails. This brittleness 
made robots economically viable only for high-volume, standardized tasks. 
General-purpose robotics—machines that could learn new tasks quickly and 
handle variation gracefully—remained elusive. 

The breakthrough came from applying the same deep learning revolution that 
transformed computer vision to the problem of robotic manipulation. 

In 2023, researchers at Google DeepMind published "RT-2: 
Vision-Language-Action Models Transfer Web Knowledge to Robotic Control," 
demonstrating that robots could learn manipulation skills by training on 
combinations of robot interaction data and general internet images and text. The 
system, called Robotics Transformer 2, could understand commands like "pick up 
the bag of chips" and execute them without task-specific programming. But the 
real revolution was happening in simulation. 

The Sim-to-Real Transfer Revolution 

The problem with training robots in the real world is simple: robots are slow, 
expensive, and fragile. If you want a robot to learn to pick up oddly shaped 
objects, you need thousands of attempts. In the physical world, this takes weeks. 
The robot tries, fails, adjusts, tries again. Engineers supervise. Objects must be 
reset. Broken parts get replaced. 

What if you could practice in a virtual world where physics worked the same way 
but time ran 10,000 times faster? 

This concept—called sim-to-real transfer—had been studied for decades but 
rarely worked. Simulated physics were too perfect, too simplified. Skills learned in 
virtual environments failed when transferred to messy reality. The 
simulation-to-reality gap was too wide. The breakthrough came from a 
counterintuitive insight: make your simulations deliberately imperfect. 

In 2019, researchers at OpenAI showed this with Dactyl, a system that learned to 
manipulate a Rubik’s Cube almost entirely in simulation. The trick was ‘domain 
randomization’: intentionally varying physical and visual parameters—friction, 
object shape and mass, lighting, sensor noise, even small perturbations to 
gravity—so the simulator was deliberately imperfect. Policies that worked across 
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all these randomized worlds transferred surprisingly well to the real robot hand, 
with no task‑specific real‑world practice. 

 

By training in thousands of slightly wrong simulated worlds, the robot learned 
strategies robust enough to work in the real world, where conditions never 
perfectly matched any individual simulation but fell within the distribution of 
variations it had experienced. By 2025, this approach had been refined and 
industrialized. 

Generative AI Meets Physical Manipulation 

The latest breakthrough combined sim-to-real transfer with foundation 
models—large neural networks trained on vast datasets that develop 
general-purpose capabilities. By the mid‑2020s, robotics companies such as 
Physical Intelligence, Covariant, and Tesla had begun using large language 
models as high-level ‘brains’ for robots. In lab and early production systems, you 
could specify tasks like ‘find boxes with red labels and stack them on the left 
pallet,’ and the model would break this into subtasks—querying vision modules to 
detect red labels, invoking grasping skills to pick up boxes, and calling motion 
planners to stack them efficiently—rather than relying on hand-crafted, 
task-specific code. 

The robots didn't need task-specific programming. They used general-purpose 
visual understanding learned from billions of internet images combined with 
manipulation skills learned from millions of simulated and real-world interactions. 

By 2025, Tesla’s Optimus humanoid robot was being trained using human 
demonstrations and large‑scale simulation. Tesla has shown prototypes learning 
simple manipulation skills—such as sorting objects or basic cloth handling—from 
motion‑captured human performances, then refining those skills in simulation 
(with randomized conditions) before attempting them on the real robot. The 
company’s stated aim is that, over time, Optimus should be able to pick up new 
tasks from only a small number of human demos, then generalize them via 
massive simulated practice. 

What previously required weeks of programming could now be accomplished in 
hours. By 2025, these fast-learning robots were deployed in over 300 
warehouses globally. By the mid‑2020s, Amazon had begun piloting more 
versatile bipedal and mobile manipulation robots alongside its conveyor systems 
and fixed-path robots, exploring whether robots that share human 
spaces—aisles, racks, and some walkable areas—could reduce the need for 
highly specialized infrastructure in future warehouses. 
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The Manufacturing Challenge 

Despite the technical breakthroughs, scaling remained expensive and complex. 

Even after years of cost reduction, each Waymo vehicle in 2025 still carried tens 
of thousands of dollars in sensors and custom computing hardware—primarily 
high‑end lidars, radars, cameras, and AI accelerators—representing a major 
ongoing challenge to scaling autonomous vehicle economics. 

For general-purpose robots, manufacturing was becoming commoditized but 
remained capital-intensive. Producing a humanoid robot at scale required 
advanced manufacturing capabilities: precision machining for joints, sophisticated 
motor controllers, integrated sensor systems, battery packs with sufficient power 
density. By late 2025, Chinese manufacturers like Unitree were bringing 
humanoid robot costs under $50,000 at volume, making them viable for industrial 
and commercial pilots even if consumer household adoption remained years 
away. 

2025: The Inflection Point 

By the end of 2025 autonomous vehicles transitioned from impressive technology 
demonstrations to unremarkable daily transportation for hundreds of thousands 
of people. 

The technology's immediate future is geographic expansion and domain 
extension. Proven capability in dense urban environments will extend to 
suburban and rural contexts—though these present different challenges around 
rare edge cases and road conditions. Trucking automation will gradually 
advance, though regulatory and safety hurdles remain more significant than for 
urban robotaxis. 

For robots, humanoid form factors will proliferate beyond warehouses into retail, 
healthcare, and eventually residential settings. The economics continue 
improving as manufacturing scales. The capabilities expand as training datasets 
grow and algorithms refine. 

But the deeper story is about machines finally gaining physical competence that 
matches their computational competence. For seventy years, computers excelled 
at abstract information processing but remained helpless in the physical world. 
They could calculate missile trajectories but couldn't tie shoes. They could beat 
chess grandmasters but couldn't safely cross a street. That asymmetry is ending. 
The same techniques that gave machines superhuman capabilities in narrow 
domains—chess, protein folding, language translation—are now giving them 
human-level capabilities in general physical interaction. 
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The implications extend beyond transportation and warehousing. Medicine will 
see surgical robots that learn techniques from observing procedures (already 
starting to happen and will only accelerate over the next few years). Construction 
will use robots that adapt to site-specific conditions. Agriculture will deploy 
machines that handle irregular crops and terrain. Disaster response will use 
robots that navigate rubble and unpredictable environments. The hardware costs 
are declining. The software is improving exponentially. The data flywheel is 
accelerating. 

The Deeper Pattern 

Step back from the specific technologies—the lidar arrays, the neural networks, 
the simulation frameworks—and a pattern emerges. 

The twentieth century was defined by machines that amplified human physical 
power. Bulldozers, airplanes, power tools, assembly lines—these technologies let 
humans move earth, fly, build, and manufacture at scales impossible with muscle 
alone. But they were always tools wielded by humans. The human remained 
essential for perception, decision-making, and adaptation. 

The twenty-first century is being defined by machines that replicate human 
cognitive capabilities—not just calculation but perception, prediction, and 
learning.  

Waymo's vehicles aren't assisted driving systems that help human drivers. They 
are complete replacements that render human drivers unnecessary. Warehouse 
robots aren't tools that augment human workers. They are substitutes that 
perform the same tasks with comparable or superior efficiency. This is different. 
This is machines gaining competence in domains that, until very recently, 
seemed fundamentally human. 

The technology remains young. The safety isn't perfect. The economics aren't 
universally favorable. The social disruption will be substantial and uneven. But 
there is no doubt that the machines are learning. And they're becoming a big part 
of our everyday lives.  
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Chapter 7: The Agentic Web (AI 
That "Does") 

Noor Shaker 

The Breakthrough That Changed Everything 

For three years, from late 2022 through 2024, artificial intelligence meant 
conversation. ChatGPT arrived in November 2022 and within months became the 
fastest-growing consumer application in history, reaching 100 million users by 
January 2023. GPT-4, Claude, and Gemini followed, each more capable than the 
last at generating text, answering questions, and holding discussions that felt 
remarkably human. 

But they all shared fundamental limitations. They stopped after each response, 
requiring constant human prompting to continue. They had no persistent 
memory—each conversation started fresh, with no recall of previous interactions. 
They hallucinated facts with unsettling confidence, inventing citations and 
statistics that sounded authoritative but were entirely fictional. And crucially, they 
couldn't act. Ask ChatGPT to book a flight, and it would tell you how to book a 
flight. Ask it to resolve a supply chain crisis, and it would outline a solution. But in 
every case, execution remained entirely in human hands. 

This created what researchers called the "execution gap"—the distance between 
AI suggesting a solution and someone implementing it. The technology could 
think but not act, advise but not execute, plan but not perform. 

Throughout 2025, we've seen signs of the gap closing. A new generation of AI 
systems emerged that didn't just respond to prompts—they pursued goals 
autonomously. They broke complex tasks into steps, used tools to interact with 
software systems, evaluated their own work, and iterated until objectives were 
met. Issues such as maintaining context across extended interactions, building 
persistent memory of user preferences and prior work are being gradually 
resolved. Mechanisms to resolve critical matters, such as hallucinations and 
privacy, are increasingly being developed to verify information through tool 
use—checking databases, running code, and validating outputs against reality 
rather than relying solely on pattern-matched training data. 

The terminology shifted to match the capability. These weren't "chatbots" or 
"language models"—they were "agents." And by December 2025, agents were 
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handling tasks that six months earlier had seemed impossible. GitHub Copilot 
Workspace and similar tools now accept feature requests in plain English and 
generate complete implementations—writing code, creating tests, running them, 
debugging failures, and submitting pull requests for human review. Salesforce's 
Agentforce and ServiceNow's AI agents manage customer inquiries from 
detection through resolution, pulling customer history and updating records 
across multiple systems without human intervention at each step. 

The shift from chatbot to agent represents more than incremental improvement. It 
is the difference between a reference book and a colleague. It is a new type of 
operating system that will redefine how we interact with the digital world. 

The Move to Small Language Model  

While agentic systems transformed what AI could do, a parallel revolution 
transformed where it could run. The surprise of 2025 wasn't just smarter AI—it 
was smaller AI that performed nearly as well. 

From 2020 to 2024, AI development followed a simple rule: bigger is better. 
GPT-3 had 175 billion parameters. GPT-4 reportedly exceeded one trillion. These 
models required massive data centers, cost hundreds of millions to train, and 
consumed megawatts running inference. A single query to GPT-4 in 2023 used 
roughly the same energy as charging a smartphone for 24 minutes—staggering 
at global scale. 

This created an obvious constraint: powerful AI was limited to capital-intensive 
companies, subject to latency delays, and raising privacy concerns as sensitive 
data travelled to remote servers for processing. For applications requiring instant 
response, offline operation, or absolute data privacy, public AI was inadequate. 

With the increasing interest in running LLMs locally and privately, and the 
long-lasting trend of Moore’s law, LLM models of 2025 are smaller, more 
cost-efficient and almost as powerful as large ones. They compressed 
GPT-4-level performance into models 100 to 1,000 times smaller. Microsoft's 
Phi-4, announced in December 2024, packed 14 billion parameters while 
matching larger models on mathematical reasoning. Google's Gemini Nano, 
available in variants of 1.8 billion and 3.25 billion parameters, ran on 
smartphones while handling complex queries. DeepSeek offers models in various 
sizes (like 1.3B, 7B), open access and can be run on a local laptop. 

The key innovation wasn't a single technique but a combination of approaches. 
Instead of training on the entire internet, Small Language Models (SLMs) trained 
on carefully curated, high-quality datasets focused on specific domains. A 
medical SLM might train exclusively on peer-reviewed papers, textbooks, and 
clinical notes—10 million carefully selected documents rather than 10 billion 
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random web pages. This improved signal-to-noise ratio, allowing smaller models 
to achieve expert-level performance in narrow domains. 

Technical optimizations added further compression. Quantization reduced neural 
networks from 32-bit floating-point numbers to 8-bit or even 4-bit integers with 
minimal accuracy loss, cutting memory requirements by 75-90%. Pruning 
identified and removed redundant neural connections, like trimming dead 
branches from a tree. Mixture of Experts (MoE) architecture, routes each input to 
a small subset of specialized "expert" sub-networks rather than activating the 
entire model, drastically reducing computation while maintaining capability. 

The Death of Search (As We Knew It) 

Perhaps the most visible transformation of 2025 was one most people didn't 
consciously notice: the quiet death of traditional search engines. 

For twenty-five years, web search followed a simple pattern. You typed a query. 
Google (or Bing, or DuckDuckGo) returned a page of links—typically ten, hence 
"ten blue links"—ranked by relevance. You clicked, read, evaluated, and often 
reformulated your query, repeating the process until you found answers. The 
model had become so ingrained that "googling" became a verb. Entire 
industries—SEO, content farms, affiliate marketing—existed to manipulate 
rankings on these search result pages. 

In early 2025, Google, Microsoft, and Apple completed a transition that began in 
2024: search engines stopped returning lists of links as the primary result. 
Instead, they generated direct answers. Ask "What are the health effects of 
intermittent fasting?" and rather than seeing links to Mayo Clinic, WebMD, and 
various diet blogs, you receive an AI-generated text summarizing current 
scientific consensus, noting areas of uncertainty, citing specific studies inline, and 
offering an organized overview of benefits, risks, and considerations. Links 
appear below in the traditional way. 

This transformation required solving multiple technical challenges. Generative AI 
models have knowledge cutoffs—dates after which their training data ends. To 
provide current information, 2025 search engines combined large language 
models with live web indexing through a process called Retrieval-Augmented 
Generation (RAG), originally introduced in a 2020 paper by researchers at Meta 
AI Research. When you query, the system generates a search plan identifying 
which sources might contain relevant information, retrieves current web pages 
and databases, extracts relevant passages, feeds this context to the LLM 
alongside your query, and generates a synthesis with inline citations. This 
process was refined throughout 2024-2025 to operate in under two 
seconds—comparable to traditional search. 
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Unlike traditional search where users evaluated source credibility themselves, 
generative search made the AI responsible for information quality. Systems 
implemented multi-layered verification: source reputation scoring that prefers 
established medical journals over random blogs for health queries, 
cross-referencing that requires multiple independent sources to confirm 
contested facts, uncertainty quantification that explicitly states when information 
is disputed, and primary source preference that favors original research over 
aggregators. 

The shift to generative search created immediate economic fallout. If users get 
answers directly from search engines, they don't click through to websites. 
Analytics firms reported that many content sites saw traffic decline substantially 
from March to December 2025. Entire business models built on SEO-optimized 
content and ad revenue faced existential crisis. The incentive structure flipped. 
Rather than churning out hundreds of shallow articles to capture search traffic, 
publishers invested in unique, authoritative content that AI systems would cite.  

The Integration Moment 

What made 2025 remarkable wasn't just individual technologies—agents, SLMs, 
generative search—but their convergence. Consider a realistic scenario from 
October 2025: A manufacturing plant manager asks their AI assistant, "Why is 
Line 3 production down 8% this week?" 

The system searches internal databases and real-time sensor data, using 
generative search techniques to synthesize information from multiple sources. It 
identifies three anomalies: a supplier delayed shipments, a robotic arm is 
miscalibrated, and ambient temperature exceeded optimal range. Displaying 
agentic behavior, it plans corrective actions and executes autonomously where 
possible, adjusting robotic calibration through API, ordering replacement parts 
using the procurement system, and scheduling HVAC maintenance. For 
decisions requiring human judgment, it consults the manager: "Supplier offers 
15% discount for accepting further delays or we can source from backup supplier 
at 8% premium—which do you prefer?" The entire analysis runs locally on edge 
servers for response time under 200 milliseconds and data privacy compliance, 
leveraging small language model efficiency. 

This closed-loop cycle—question, analysis, action, verification—is happening 
across manufacturing, healthcare, logistics, finance, and creative industries. The 
machinery was invisible to most users. They simply noticed that technology had 
become more helpful, more proactive, less demanding of their attention and 
effort. 

The agentic revolution arrived with legitimate concerns. Unlike previous AI waves 
that augmented human work, agents began replacing it. Roles involving routine 
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digital tasks—data entry, simple customer service, basic coding—saw significant 
automation. Estimates of job displacement varied widely, but it is clear that AI is 
moving from assistant to substitute for an expanding range of work. 

Security risks emerged as agents gained write-access to systems. "Prompt 
injection" attacks—where malicious actors embedded hidden instructions in 
emails, published articles or web pages that agents processed—became a 
serious threat. As agents became more autonomous, ensuring they reliably 
pursued intended goals—and didn't pursue unintended harmful goals—moved 
from theoretical concern to practical urgency. 

Why 2025 Was the Inflection Point 

Several convergent factors made 2025 the year of agents. Hardware 
advances—NVIDIA H200 GPUs, Google TPU v5, specialized AI 
accelerators—dropped inference costs substantially from 2023, making 
continuous agent operation economically viable. Algorithmic maturity moved 
techniques like chain-of-thought prompting, tool-use protocols, and verification 
systems from research papers to production. Standardized APIs and open 
access models allowed agents to interact with thousands of services without 
custom integration. 

Perhaps most importantly, public readiness had matured. Consumer experience 
with ChatGPT and similar systems from 2023-2024 built familiarity and changed 
how we are used to interact with digital contents and do tasks. The idea of "AI 
that does things" seemed like natural evolution. 

Looking Forward 

As large language models and agentic AI continue evolving and become 
embedded in our daily interactions, we are coming to better appreciate where 
and how they serve us best and what their limitations are. LLM systems, while 
very powerful, still hallucinate and are far from being trustworthy. The relentless 
march of Moore's law means these tools will eventually become commoditized, 
mostly in the form of local personalized models running on edge devices. 
Commercial models for many existing companies will be challenged as 
capabilities that once required cloud infrastructure migrate to smartphones and 
laptops. 

Agentic AI is still far from its glory days, with useful applications being discovered 
and strengths and weaknesses being explored. Co-coding with AI agents has 
emerged as one of the prime applications and has proven remarkably useful, 
measured by the explosion of apps and websites now largely implemented by AI 
agents in late 2025. But code quality, structure, and optimization are still far from 
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optimal. These systems operate at roughly a junior software engineering level, 
requiring an expert human in the loop to guide architectural decisions and review 
output before deployment. 

The most widely adopted and immediately valuable applications for agentic AI 
are automating tasks that require manual execution rather than deep 
expertise—reformatting or reorganizing data across systems, improving or 
creating content at scale, automating bulk communications, managing CRM 
workflows, and similar operational overhead. These tasks previously consumed 
substantial human time and salary expense. Agentic AI eliminates this overhead 
almost entirely, reducing both time and cost by orders of magnitude. Dismissing 
this as mere efficiency improvement misses the point. When a single agent can 
perform in minutes what once required hours of human labor across an entire 
team, the accumulated impact reshapes how organizations allocate human 
capital. The transformation is fundamental, even if the individual tasks are 
mundane. 

More demanding applications—scientific discovery, complex applications, tasks 
that require genuine expertise—are still in early progress. These models will 
certainly become more capable as researchers continue refining and fine-tuning 
them on better, task-specific data. But this journey will likely take several years, 
not months. Integration remains a significant bottleneck, with these new systems 
needing to interact with legacy frameworks and datasets built for human 
operators. 

Regulatory systems also need to catch up to the pace of innovation, especially 
when it comes to critical applications like healthcare. Having agentic systems that 
automate insurance claims, streamline operations, take notes, and summarize 
documents is valuable. But what would be truly transformative is having a 
connected system of multiple agents working together—diagnostic support, trial 
enrollment, personalized treatment, real-time monitoring—all coordinated 
seamlessly. This requires not only advancement on the research side (which is 
mostly ongoing) but also rapid evolution from regulatory bodies to ensure 
thorough testing and safe implementation of these systems at the pace 
innovation demands. 

The next few years will witness something no less than revolutionary. From AI 
systems conducting scientific discoveries to quiet but certain transformations of 
our daily work routines, from robotic systems planning and executing complex 
tasks autonomously to multi-agent coordination on goals that once required 
dozens of human specialists—the frontier is expanding rapidly. It is, without 
question, a remarkable decade to be living through.  
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